If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y+y^2=24
We move all terms to the left:
4y+y^2-(24)=0
a = 1; b = 4; c = -24;
Δ = b2-4ac
Δ = 42-4·1·(-24)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{7}}{2*1}=\frac{-4-4\sqrt{7}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{7}}{2*1}=\frac{-4+4\sqrt{7}}{2} $
| 1/x=5/15 | | 10.41/7.29=9.24/t | | 30.25x=10.82x^2-65800x+100000000 | | 10.41/7.29=9.24/x | | 96+X^2-48x=0 | | -(-4x-3)-(x+6)=-21 | | +x^2-x-1=0 | | -1+x^2-x=0 | | -1-x^2-x=0 | | -(x+3)=2x-4 | | -1-x^2-1=0 | | 43=-8(-5-8n)-3(6n-1) | | -1-x-1=0 | | 4.9t^2-49t-95=0 | | 7x^2+5x=-2 | | 1+x^2+x=0 | | 21=49a | | -8×-0.5×(-0.1)2=y | | 47+3x-38+7x-95=90 | | 1/7x-5/3=-5/2 | | H(5)=-4.9t^2+49t+100 | | 24/17=162/x | | 10=(-(2/3))(4x+5) | | 10=-(2/3)(4x+5) | | x4–x=0 | | 3/x+1-1/x-1=3x/×-1*×+1 | | -5x=20x | | -1+x^2+2x=0 | | 1.5x-0.66x=2 | | 2g+g+(2g+5)=100 | | 5^4x-3=0.5 | | 2g+g+(2g/5)=100 |